The Bromination of Some Cholest-5-en-7-ones

By Shafiullah • and Ejaz Ahmad Khan, Department of Chemistry, Aligarh Muslim University, Aligarh-202001, India
Haruo Ogura and H. Takayanagi, School of Pharmaceutical Sciences, Kitasato University, Tokyo 108, Japan

Bromination ($\mathrm{Br}_{2}-\mathrm{HBr}-\mathrm{HOAc}$) of cholest-5-en-7-one (1) gives $5,6 \alpha$-dibromo- 5β-cholestan-7-one (4), whereas 3β-acetoxycholest-5-en-7-one (2) gives the $5 \alpha, 6 \beta$-dibromo-product (5). Addition products (6) and (7) of both types are formed from the 3β-chloro-derivative (3). Products isolated from the reaction of pyridine with the 5,6dibromides (4)-(6) and 4,5,6-tribromide (7) include a 5 -en-7-one (1)-(3), a 6-bromo-5-en-7-one (8), a 6 -bromo- 3,5 -dien-7-one (9), a 3,5-dien-7-one (10), and a 4,6-dibromo-3,5-dien-7-one (11). The structures have been established on the basis of elemental analysis and spectral properties.

Halogenation of ketones at the α-position and subsequent dehydrohalogenation by base is frequently employed to create unsaturated centres adjacent to ketonic functions. Such operations have been of im-

$\begin{array}{llll} & R & X & R \\ \text { (1) } \mathrm{H} & \mathrm{H} & \text { (8) } \mathrm{AcO} & \mathrm{Br} \\ \text { (2) } \mathrm{OAC} & \mathrm{H} & & \\ \text { (3) } \mathrm{Cl} & \mathrm{H} & & \end{array}$

$\begin{array}{lll} & \mathrm{R}^{1} & \mathrm{R}^{2} \\ \text { (4) } \mathrm{H} & \mathrm{H} \\ \text { (7) } \mathrm{Cl} & \mathrm{Br}\end{array}$

R
(5) OAc
(6) Cl

$\begin{array}{ll} & \mathrm{R} \\ \text { (9) } \mathrm{H} & \mathrm{X} \\ \text { (10) } \mathrm{H} & \mathrm{H} \\ \text { (11) } \mathrm{Br} & \mathrm{Br}\end{array}$
mense utility in the field of steroids. ${ }^{1}$ We considered it expedient to prepare some keto-steroids with bromines at both α - and β-positions and subject them to dehydrohalogenation with pyridine under reflux. The ketones chosen were cholest-5-en-7-one (1) and its 3β-acetoxy- (2) and 3β-chloro- (3) analogues.

Treatment of (1) with $\mathrm{Br}_{2}-\mathrm{HBr}$ afforded a dibromocompound (4). The presence of bromine atoms at $\mathrm{C}-5$ and -6 was proved by its debromination $(\mathrm{Zn}-\mathrm{AcOH})$ to the parent ketone (I). The location of bromine at $\mathrm{C}-6$ (and not at C-8) was further supported by the ${ }^{1} \mathrm{H}$ n.m.r. spectrum which displayed a singlet at $\delta 5.39$. The stereochemistry was determined by means of ${ }^{1} \mathrm{H}$ n.m.r., c.d., and i.r. spectral data. The bromine at C-6 has been assumed to be α-oriented in view of its c.d. curve which shows a negative Cotton effect. ${ }^{2,3}$ In the ${ }^{1} \mathrm{H}$ n.m.r. spectrum the $\mathrm{C}-10$ methyl signal was observed at
$\delta 1.54$. This lower field shift of the C-10 methyl signal should be explained in terms of the cis ring junction, since once the C - 6 -bromine is α-oriented (which causes a small downfield shift of the C-10 methyl signal) ${ }^{4}$ it is the cis ring junction which will be responsible for the significant deshielding of $\mathrm{C}-10$ methyl signals. ${ }^{5}$ Thus, assuming the cis ring junction both $\mathrm{C}-5$ and $\mathrm{C}-6$ bromines have become equatorial. The presence of equatorial bromines was further supported by its i.r. spectrum in which the $\mathrm{C}-\mathrm{Br}$ absorption frequencies occur at 720 and $710 \mathrm{~cm}^{-1}$. ${ }^{6}$

Similar treatment of (2) gave (5). The C-6 bromine is taken to be β-oriented on the basis of the c.d. curve which shows a positive Cotton effect. The configuration (α or β) of the C- 5 bromine was decided on the basis of the n.m.r. spectrum which showed a multiplet at $\delta 5.46$ having half-height width of 18 Hz due to the proton at C-3. Evidently this proton was axial (α) and the $A-B$ ring junction trans, ${ }^{7}$ rendering the $\mathrm{C}-5$ bromine an α orientation. $\mathrm{Zn}-\mathrm{HOAc}$ debromination of (5) gave back (2).

C.d. curves of compounds (4)-(7)

Reaction of (3) provided (6) and (7) in major and minor amounts respectively. In the circular dichroism (c.d.) spectrum of (6), a positive Cotton effect curve was observed. On this basis the C-6 bromine is assumed as β-oriented. The C-5 bromine is assigned α-orientation on the basis of the half-height width $(20 \mathrm{~Hz})$ of the $\mathrm{C}-3$ proton signal, a multiplet at $\delta 4.60$. Thus both the bromines have become diaxial. Treatment of (6) with zinc-acetic acid gave back (3).

The stereoformula of (7) is based upon elemental analysis (three bromine atoms) and spectral properties. The bromine at $\mathrm{C}-6$ is α-oriented as it shows a negative Cotton effect in the c.d. spectrum. In the ${ }^{1} \mathrm{H}$ n.m.r. spectrum the C-3 proton appears as a multiplet at $\delta 4.93$. The half-height width (6 Hz) of this signal suggests that the $\mathrm{C}-3$ proton is equatorial and that the $\mathrm{A}-\mathrm{B}$ ring junction is cis, ${ }^{7}$ proving β-orientation of the $\mathrm{C}-5$ bromine. The $\mathrm{C}-4$ bromine is assigned β-orientation on the basis of a doublet-like broad signal at $\delta 3.17$ for the proton at $\mathrm{C}-4$. The half-height width (18 Hz) of this signal suggests that the $\mathrm{C}-4$ proton is axial, rendering the $\mathrm{C}-4$ bromine a β-orientation (equatorial).
${ }^{1} \mathrm{H}$ N.m.r. chemical shifts of the C-6 proton for compounds

	$(4)-(7)$	
	C-6-H	Chemical shift
Compound	configuration	(p.p.m.)
(4)	a	5.39
(5)	e	4.80
(6)	e	4.75
(7)	a	5.22

The chemical shifts of the hydrogen attached to C-6 of the bromo-compounds $(4-7)$ are given in the Table. The data show that the $6-\mathrm{H}$ signal for the epimer with an equatorial hydrogen appears at higher field than that for the epimer containing axial hydrogen. This is in accordance with the data given by Nickon et al. ${ }^{8}$

When refluxed with pyridine, (4) surprisingly gave back the ketone (1), ${ }^{9}$ a result of debromination rather than dehydrobromination. A similar observation was also noticed earlier. ${ }^{10,11}$ The role of pyridine as a debrominating agent was again in evidence as (5) in boiling pyridine provided (2) ${ }^{12}$ along with (8), a consequence of loss of HBr from $\mathrm{C}-5-\mathrm{C}-6$, and (9) which is derived from (8) upon the removal of acetic acid. Reaction of (6) provided (3), ${ }^{13}(9)$, and (10). ${ }^{14}$ Loss of HCl from (3) gives (10) ${ }^{14}$ while losses of HBr and HCl from (6) produce (9). In a similar manner (7) gives rise to (11).

EXPERIMENTAL

U.v. spectra were cletermined for solutions in ethanol and i.r. spectra were measured for KBr discs on a Perkin-Elmer 621 grating spectrophotometer. ${ }^{1} \mathrm{H}$ N.m.r. spectra were recorded for solutions in CDCl_{3} on a Varian A 60 instrument with $\mathrm{Me}_{4} \mathrm{Si}$ as internal standard. C.d. curves were measured with a JASCO J-20 spectropolarimeter. T.1.c. plates were coated with silica gel and sprayed with a 20% solution of perchloric acid. Light petroleum refers to the fraction of b.p. $60-80^{\circ}$.

Bromination of Cholest-5-en-7-one (1).-To a solution of (1) ${ }^{11}(3.0 \mathrm{~g})$ in ether (35 ml) containing a few drops of HBr was added a solution of bromine (3 ml) in acetic acid (60 ml) at room temperature over a period of 30 min with shaking. The solid that separated within a few minutes after the addition of the bromine solution was filtered to give $5 \beta, 6 \alpha-$ dibromocholestan-7-one (4) (2.10 g), m.p. 142° (Found: C, $59.45 ; \mathrm{H}, 7.95 . \quad \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{Br}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 59.55 ; \mathrm{H}, 8.0 \%\right)$, $\nu_{\text {max. }} 1710(\mathrm{C}=\mathrm{O}), 720$, and $710 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{Br}), \delta 5.39(\mathrm{~s}, 6-\mathrm{H})$, $1.54(\mathrm{~s}, 10-\mathrm{Me})$, and $0.72(\mathrm{~s}, 13-\mathrm{Me})$.
Bromination of 3β-Acetoxycholest-5-en-7-one (2).-Bromination of (2) ${ }^{12}(5.5 \mathrm{~g})$ as described above gave 3β-acetoxy$5 \alpha, 6 \beta$-dibromocholestan-7-one (5) (4.2 g), m.p. 155° (Found: $\mathrm{C}, 57.85 ; \mathrm{H}, 7.65 . \quad \mathrm{C}_{29} \mathrm{H}_{46} \mathrm{Br}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 57.80 ; \mathrm{H}$, $7.64 \%)$, $\nu_{\text {max. }} 1730(\mathrm{MeC}=\mathrm{O}), 1712(\mathrm{C}=\mathrm{O}), 1235(\mathrm{C}-\mathrm{O})$, and $695 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{Br}), \delta 5.46\left(\mathrm{~m}, 3 \alpha-\mathrm{H}, W_{\frac{1}{2}} 18 \mathrm{~Hz}\right), 4.8(\mathrm{~s}$, $6 \alpha-\mathrm{H}), 2.05\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{COO}\right), 1.62\left(\mathrm{~s}, 10-\mathrm{CH}_{3}\right)$, and $0.70(\mathrm{~s}$, $13-\mathrm{CH}_{3}$).

Bromination of 3β-Chlorocholest-5-en-7-one (3).-Eromination of (3$)^{13}(8.0 \mathrm{~g})$ under similar conditions furnished 3β -chloro- $5 \alpha, 6 \beta$-dibromocholestan-7-one (6) (5.2 g), m.p. 135° (Found: $\mathrm{C}, 56.0 ; \mathrm{H}, 7.4 . \quad \mathrm{C}_{27} \mathrm{H}_{43} \mathrm{Br}_{2} \mathrm{ClO}$ requires $\mathrm{C}, 56.05$; $\mathrm{H}, 7.45 \%)$, $\nu_{\text {max. }} 1725(\mathrm{C}=\mathrm{O}), 760(\mathrm{C}-\mathrm{Cl})$, and $685,690 \mathrm{~cm}^{-1}$ $(\mathrm{C}-\mathrm{Br}), \delta 4.75(\mathrm{~s}, 6 \alpha-\mathrm{H}), 4.60\left(\mathrm{~m}, 3 \alpha-\mathrm{H}, W_{\frac{1}{2}} 20 \mathrm{~Hz}\right), 1.63(\mathrm{~s}$, $\left.10-\mathrm{CH}_{3}\right)$, and $0.71\left(\mathrm{~s}, 13-\mathrm{CH}_{3}\right)$.
The mother liquor of (6) provided 3β-chloro- $4 \beta, 5 \beta, 6 \alpha-$ tribromocholestan-7-one (7) (1.2 g), m.p. 144° (homogeneous by t.l.c.) (Found: C, 49.4; H, 6.4. $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{Br}_{3} \mathrm{ClO}$ requires C, $49.3 ; \mathrm{H}, 6.39 \%)$, $\nu_{\text {max. }} 1715(\mathrm{C}=\mathrm{O}), 760(\mathrm{C}-\mathrm{Cl})$, and 720 $\mathrm{cm}^{-1}(\mathrm{C}-\mathrm{Br}), \delta 5.22(\mathrm{~s}, 6 \beta-\mathrm{H}), 4.93$ (t-like, $\left.3 \alpha-\mathrm{H}\right), 3.17(\mathrm{~d}-$ like, $4 \alpha-\mathrm{H}), 1.52\left(\mathrm{~s}, 10-\mathrm{CH}_{3}\right)$, and $0.72\left(\mathrm{~s}, 13-\mathrm{CH}_{3}\right)$.

Treatment of $5 \beta, 6 \alpha$-Dibromocholestan-7-one (4) with Pyri-dine.-The dibromoketone (4) (lg) in freshly distilled pyridine (10 ml) was heated under reflux for 1 h . The reaction mixture was extracted with ether and the ethereal solution washed with water, dilute sulphuric acid, water, sodium hydrogen carbonate solution (5%), and water, and dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Removal of the solvent gave an oil (ca. l g) which was chromatographed over silica gel (20 g). Eluates from light petroleum-ether ($4: 1$) gave cholest-5-en-7-one (1) (210 mg), m.p. 128° (from methanol) (lit., ${ }^{11} 125-129^{\circ}$), negative Beilstein test, identical with (t.l.c.) an authentic sample.

Treatment of $3 \beta-$ Acetoxy-5, 6β-dibromocholestan-7-one (5) with Pyridine.-The dibromoketone (5) (3.0 g) was treated with pyridine (30 ml) under reflux for 1 h . After usual work-up it gave an oil (2.8 g) which was chromatographed over silica gel (60 g). Elution with light petroleumbenzene ($18: 1$) and crystallization from light petroleum gave 6 -bromocholesta-3,5-dien-7-one (9) (240 mg), m.p. 148°, positive Beilstein test (Found: C, 70.1; H, 8.8. $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{BrO}$ requires $\mathrm{C}, 70.3 ; \mathrm{H}, 8.89 \%$), $\lambda_{\text {max. }} 295 \mathrm{~nm}$ ($\varepsilon 12000$), $\nu_{\text {max. }} 1670(\mathrm{C}=\mathrm{O}), 1615(\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C})$, and $700 \mathrm{~cm}^{-1}$ $(\mathrm{C}-\mathrm{Br}), \delta 6.48(\mathrm{~m}, 3-$ and $4-\mathrm{H}), 1.16\left(\mathrm{~s}, 10-\mathrm{CH}_{3}\right)$, and $0.72(\mathrm{~s}$, $13-\mathrm{CH}_{3}$).

Light petroleum-benzene (16:1) eluted 3β-acetoxy-6-bromocholest-5-en-7-one (8), which was crystallized from light petroleum, yield $160 \mathrm{mg}, \mathrm{m} . \mathrm{p} .160^{\circ}$, positive Beilstein test (Found: C, 66.7; H, 8.6. $\mathrm{C}_{29} \mathrm{H}_{45} \mathrm{BrO}_{3}$ requires C , $66.8 ; \mathrm{H}, 8.65 \%) . \quad \lambda_{\text {max. }} 258 \mathrm{~nm}(\varepsilon 8200), \nu_{\text {max. }} 1735$ $(\mathrm{MeC}=\mathrm{O}), 1680(\mathrm{C}=\mathrm{O}), 1600(\mathrm{C}=\mathrm{C}), 1255(\mathrm{C}-\mathrm{O})$, and 720 $\mathrm{cm}^{-1}(\mathrm{C}-\mathrm{Br}), \delta 4.75(\mathrm{~m}, 3 \alpha-\mathrm{H}), 2.02\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{COO}\right), 1.22(\mathrm{~s}$, $\left.10-\mathrm{CH}_{3}\right)$, and $0.68\left(\mathrm{~s}, 13-\mathrm{CH}_{3}\right)$.
Elution with light petroleum-benzene ($12: 1$) gave 3β -acetoxycholest-5-en-7-one (2) which was crystallized from
light petroleum, yield $150 \mathrm{mg}, \mathrm{m} . \mathrm{p}$. and mixed m.p. 163° (lit., ${ }^{12} 164^{\circ}$), negative Beilstein test (Found: C, 78.7; H, 10.3. Calc. for $\mathrm{C}_{29} \mathrm{H}_{46} \mathrm{O}_{3}: \mathrm{C}, 78.75 ; \mathrm{H}, 10.4 \%$), $\lambda_{\text {max. }} 235$ $\mathrm{nm} \quad(\varepsilon 7000)$, $\nu_{\text {max. }} 1730$ (MeC=O), 1675 (C=O), 1635 $(\mathrm{C}=\mathrm{C})$, and $1240 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}), \delta 5.71(\mathrm{~s}, 6-\mathrm{H}), 4.70(\mathrm{~m}, 3 \alpha-\mathrm{H})$, $2.01\left(\mathrm{~s}, \mathrm{CH}_{3} \mathrm{COO}\right), 1.20\left(\mathrm{~s}, 10-\mathrm{CH}_{3}\right)$, and $0.68\left(\mathrm{~s}, 13-\mathrm{CH}_{3}\right)$.

Treatment of 3β-Chloro- $5 \alpha, 6 \beta$-dibromocholestan-7-one (6) with Pyridine.-The dibromide (6) (4.0 g) was refluxed with pyridine $(40 \mathrm{ml})$ for 1 h . After the usual work-up it was chromatographed over silica gel (80 g). Elution with light petroleum-benzene ($16: 1$) furnished (9) which was crystallized from light petroleum, yield $350 \mathrm{mg}, \mathrm{m} . \mathrm{p} .148^{\circ}$. This compound was identical in all respects with that previously obtained from the dibromoketone (5).

Elution with light petroleum-benzene ($10: 1$) gave the parent ketone (3) which was crystallized from light petroleum, yield $210 \mathrm{mg}, \mathrm{m} . \mathrm{p}$. and mixed m.p. 145° (lit., ${ }^{13} 145^{\circ}$) (Found: $\mathrm{C}, 77.3 ; \mathrm{H}, \mathbf{1 0 . 2}$. Calc. for $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{ClO}: \mathrm{C}, 77.5$; $\mathrm{H}, 10.3 \%$), $\lambda_{\text {max. }} 235 \mathrm{~nm}(\varepsilon 7200), \nu_{\text {max. }} 1675(\mathrm{C}=\mathrm{O}), 1635$ $(\mathrm{C}=\mathrm{C})$, and $750 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{Cl}), \delta 5.55(\mathrm{~s}, 6-H), 3.78(\mathrm{~m}, 3 \alpha-H)$, $1.21\left(\mathrm{~s}, 10-\mathrm{CH}_{3}\right)$, and $0.70\left(\mathrm{~s}, 13-\mathrm{CH}_{3}\right)$.

Elution with light petroleum--benzene (5:1) provided cholesta-3,5-dien-7-one (10) which was crystallized from ethanol, yield $110 \mathrm{mg}, \mathrm{m} . \mathrm{p}$. and mixed m.p. 116° (lit., ${ }^{14}$ 118°), negative Beilstein test (Found: C, 84.7; H, 10.8 . Calc. for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}: \mathrm{C}, 84.8 ; \mathrm{H}, 11.0 \%$), $\lambda_{\text {max }} 278 \mathrm{~nm}$ $(\varepsilon 11000), \nu_{\text {max. }} 1660(\mathrm{C}=\mathrm{O}), 1630$, and $1600(\mathrm{C}=\mathrm{C}) \mathrm{cm}^{-1}$, $\delta 6.1(\mathrm{br} \mathrm{s}, 3-\mathrm{and} 4-\mathrm{H}), 5.48(\mathrm{~s}, 6-\mathrm{H}), 1.20\left(\mathrm{~s}, 10-\mathrm{CH}_{3}\right)$, and $0.70\left(13-\mathrm{CH}_{3}\right)$.

Dehydrohalogenation of 3β-Chloro- $4 \beta, 5 \beta, 6 \alpha$-ivibromo-cholestan-7-one (7).-The tribromoketone (7) (1 g) was treated with pyridine (10 ml) under reflux for 2 h . After the usual work-up and chromatography, it furnished 4,6 -dibromocholesta-3,5-dien-7-one (11) which was crystallized from petrol, vield $150 \mathrm{mg}, \mathrm{m} . \mathrm{p} .170^{\circ}$, positive Beilstein test
(Found: $\mathrm{C}, 60.1$; $\mathrm{H}, 7.4 . \mathrm{C}_{27} \mathrm{H}_{40} \mathrm{Br}_{2} \mathrm{O}$ requires C , 60.0 ; $\mathrm{H}, 7.4 \%), \lambda_{\text {max }} 298 \mathrm{~nm}(\varepsilon 15000), \nu_{\text {max. }} 1690(\mathrm{C}=\mathrm{O}), 1610$ ($\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{C}$), and $720 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{Br}), \delta 6.55$ (dd, $J 7$ and 3 Hz ; $3-\mathrm{H}), 1.24\left(\mathrm{~s}, 10-\mathrm{CH}_{3}\right)$, and $0.70\left(\mathrm{~s}, 13-\mathrm{CH}_{3}\right)$.

One of us (E. A. K.) is grateful to the Council of Scientific and Industrial Research, New Delhi, for a fellowship. We are also thankful to Professors W. Rahman and M. S. Ahmad for facilities and useful discussion.
[8/1897 Received, 31st October, 1978]

REFERENCES

${ }^{1}$ C. Djerassi, 'Steroid Reactions,' Holden-Day, San Francisco, 1963 , p. 180.
${ }^{2}$ P. Crabbe, ' Optical Rotatory Dispersion and Circular Dichroism in Organic Chemistry,' Holden-Day, San Francisco, 1965.
${ }^{3}$ C. Djerassi and W. Klyne, J. Amer. Chem. Soc., 1957, 79 1506.
${ }^{4}$ E. R. Malinowski, M. S Manhas, G. H. Nuller, and A. K. Bose, Tetrahedron Letters, 1963, 1161.
${ }_{5}$ R. F. Zureher, Helv. Chim. Acta, 1963, 46, 2054.
${ }^{6}$ D. H. R. Barton, J. E. Page, and C. W. Shoppee, J. Chem. Soc., 1956, 331.
${ }^{7}$ N. S. Bhacca and D. H. Williams, 'Application of NMR Spectroscopy in Organic Chemistry,' Holden-Day, San Francisco, 1964.
${ }^{8}$ A. Nickon, M. A. Castle, R. Harada, C. F. Berkoff, and R. O. Williams, J.Amer. Chem. Soc., 1963, 85, 2185.

9 W. G. Dauben and K. H. Takemura, J. Amer. Chem. Soc., 1953, 75, 6302.
${ }^{10}$ E. Schwenk and B. Whitemann, J. Amer. Chem. Soc., 1937, 59, 949 .

11 E. W. Warnhoff, J. Org. Chem., 1972, 27, 4587.
12 W. G. Dauben and G. J. Fonken, J. Amer. Chem. Soc., 1956, 78, 4736.
${ }_{13}$ A. H. Milburn and E. V. Truter, J. Chem. Soc., 1956, 1736.
${ }^{14}$ Q. R. Peterson and C. T. Chen, J. Amer. Chem. Soc., 1955, 177, 2557

